Why SQL is the natural language for data analysis

Analytics is a must-have component of every corporate data warehousing and big data project. It is the core driver for the business: the development of new products, better targeting of customers with promotions, hiring of new talent and retention of existing key talent. Yet the analysis of especially “big data environments”, data stored and processed outside of classical relational systems, continues to be a significant challenge for the majority companies. According to Gartner, 72% of companies are planning to increase their expenditure on big data yet 55% state they don’t have the necessary skills to make use of it.

A report by Accenture and GE (How the Industrial Internet is Changing the Competitive Landscape of Industries) found that 87% of enterprises believe big data analytics will redefine the competitive landscape of their industries within the next three years and 89% believe that companies that fail to adopt a big data analytics strategy in the next year risk losing market share and momentum.

Additionally, a recent Cloudera webcast (Pervasive Analytics Gets Real ) noted that, while all businesses understand that analytics drive value, most organizations leverage only an average of 12% of their enterprise data for analytics. This implies that there is a significant amount of business value and opportunity that is being completely missed.

These type of market analysis highlights the huge analytical challenge that many businesses face today. While many companies are willing to invest in the critical area of big data technology to create new “data reservoirs”, for most of them, the same level of focus in relation to the analysis of these new data sources is missing. This means that many will struggle to find a meaningful way to analyze and realize the benefits of this vital investment strategy.

Many of the early adopters of big data are managing the analysis of their data reservoirs through the use of specialized programming techniques on the big data ecosystem, such as MapReduce. This is leading to data being locked inside proprietary data silos, making cross-functional cross-data store analysis either extremely difficult or completely impossible. IT teams are struggling to adapt complex data-silo-specific program code to support new and evolving analytical requirements from business users. In many cases these additional requirements force teams to implement yet more data processing languages. Overall, these issues greatly complicate the conversion of big data led discoveries into new business opportunities: driving the development of new products, capturing increased market share and/or launching into completely new markets. Most companies are searching for a single rich, robust, productive, standards driven language that can provide unified access over all their data and drive rich, sophisticated analysis.

Already, many companies are seeing the benefits of using SQL to drive analysis of their big data reservoirs. In fact, SQL is fast becoming the default language for big data analytics. This is because it provides a mature and comprehensive framework for both data access (so projects can avoid creating data silos) and rich data analysis.

12c

The objective of this series of articles, which will appear over the coming weeks, is to explain why SQL is the natural language for amy kind of data analysis including big data and the benefits that this brings for application developers, DBAs and business users.

Why SQL is so successful

Data processing has seen many changes and significant technological advances over the last forty years. However, there has been one technology, one capability that has endured and evolved: the Structured Query Language or SQL. Many other technologies have come and gone but SQL has been a constant. In fact, SQL has not only been a constant, but it has also improved significantly over time. What is it about SQL that is so compelling? What has made it the most successful language? SQL’s enduring success is the result of a number of important and unique factors:

  • Powerful framework
  • Transparent optimization
  • Continuous evolution
  • Standards based

Over the coming weeks I will explore each of these key points in separate posts and explain what makes SQL such a compelling language for data analysis. So stay tuned…..

 

Technorati Tags: , ,

Comments

Popular posts from this blog

My query just got faster - brief introduction to 12.2 in-memory cursor duration temp tables

Thursday's Top Picks at OpenWorld for Data Warehousing and Big Data

SQL Pattern Matching Deep Dive - Part 6, state machines